Processing math: 100%

Cambridge Additional Mathematics 0606 : 2023 October-November Paper 23 Q9 (Solution)

Question 9(a)

Find dydx

Steps of Solution

Given y=xe2x:

dydx=xddx(e2x)+e2xddx(x)
dydx=x2e2x+e2x1
dydx=2xe2x+e2x
dydx=e2x(2x+1)

Explanation of the Steps

Given the function y=xe2x, we need to find its derivative with respect to x. We’ll use the product rule, which states that for two functions u(x) and v(x), the derivative of their product is:

ddx(uv)=udvdx+vdudx

Here, u=x and v=e2x.

First, we find the derivatives of u and v:
dudx=1
dvdx=ddx(e2x)=2e2x

Applying the product rule:
dydx=xddx(e2x)+e2xddx(x)
dydx=x2e2x+e2x1
dydx=2xe2x+e2x

Factor out e2x:
dydx=e2x(2x+1)

Question 9(b)

Find the equation of the normal to the curve at x=1

Steps of Solution

Given the curve y=xe2x:
dydx|x=1=e2(1)(2(1)+1)
dydx|x=1=e2(2+1)
dydx|x=1=3e2

The slope of the normal line is:
mnormal=13e2

The point on the curve at x=1:
y=1e2(1)=e2

Equation of the normal line using the point-slope form yy1=m(xx1):
ye2=13e2(x1)

Explanation of the Steps

Given the curve y=xe2x, we first need to find the derivative dydx at x=1. We already determined that:
dydx=e2x(2x+1)

Evaluating at x=1:
dydx|x=1=e2(1)(2(1)+1)
dydx|x=1=e2(2+1)
dydx|x=1=3e2

The gradient of the tangent to the curve at x=1 is 3e2. The gradient of the normal is the negative reciprocal of the gradient of the tangent:
mnormal=13e2

Next, we find the coordinates of the point on the curve at x=1:
y=xe2x
y=1e2(1)=e2

So the point is (1,e2). The equation of the normal line in point-slope form yy1=m(xx1) is:
ye2=13e2(x1)

Simplifying this equation gives us the equation of the normal line.

Question 9(c)

Use your answer to part (a) to find the exact value of 202xe2xdx

Steps of Solution

Given:
2xe2xdx

Using integration by parts where u=x and dv=e2xdx:
du=dx
v=e2x2

So:
2xe2xdx=2(xe2x2e2x2dx)
=xe2xe2xdx
=xe2xe2x2+C

Evaluating from 0 to 2:
[xe2xe2x2]20
=(2e4e42)(0e02)
=2e4e42+12
=4e42e42+12
=3e42+12
=3e4+12

Explanation of the Steps

To find the exact value of the integral 202xe2xdx, we use the method of integration by parts. Let:
u=xanddv=2e2xdx

Then:
du=dxandv=2e2xdx=e2x

Using the integration by parts formula udv=uvvdu, we get:
2xe2xdx=2(xe2xe2xdx)

Solving the integral e2xdx:
e2xdx=e2x2

So:
=2(xe2xe2x2)
=2xe2xe2x+C

Evaluating the definite integral from 0 to 2:
[2xe2xe2x]20
=(2(2)e2(2)e2(2))(2(0)e2(0)e2(0))
=(4e4e4)(01)
=3e4+1

Thus, the exact value of the integral is:
3e4+1

Leave a Comment