Question 9(a)
Find dydx
Steps of Solution
Given y=xe2x:
dydx=x⋅ddx(e2x)+e2x⋅ddx(x)
dydx=x⋅2e2x+e2x⋅1
dydx=2xe2x+e2x
dydx=e2x(2x+1)
Explanation of the Steps
Given the function y=xe2x, we need to find its derivative with respect to x. We’ll use the product rule, which states that for two functions u(x) and v(x), the derivative of their product is:
ddx(uv)=udvdx+vdudx
Here, u=x and v=e2x.
First, we find the derivatives of u and v:
dudx=1
dvdx=ddx(e2x)=2e2x
Applying the product rule:
dydx=x⋅ddx(e2x)+e2x⋅ddx(x)
dydx=x⋅2e2x+e2x⋅1
dydx=2xe2x+e2x
Factor out e2x:
dydx=e2x(2x+1)
Question 9(b)
Find the equation of the normal to the curve at x=1
Steps of Solution
Given the curve y=xe2x:
dydx|x=1=e2(1)(2(1)+1)
dydx|x=1=e2(2+1)
dydx|x=1=3e2
The slope of the normal line is:
mnormal=−13e2
The point on the curve at x=1:
y=1⋅e2(1)=e2
Equation of the normal line using the point-slope form y–y1=m(x–x1):
y–e2=−13e2(x–1)
Explanation of the Steps
Given the curve y=xe2x, we first need to find the derivative dydx at x=1. We already determined that:
dydx=e2x(2x+1)
Evaluating at x=1:
dydx|x=1=e2(1)(2(1)+1)
dydx|x=1=e2(2+1)
dydx|x=1=3e2
The gradient of the tangent to the curve at x=1 is 3e2. The gradient of the normal is the negative reciprocal of the gradient of the tangent:
mnormal=−13e2
Next, we find the coordinates of the point on the curve at x=1:
y=xe2x
y=1⋅e2(1)=e2
So the point is (1,e2). The equation of the normal line in point-slope form y–y1=m(x–x1) is:
y–e2=−13e2(x–1)
Simplifying this equation gives us the equation of the normal line.
Question 9(c)
Use your answer to part (a) to find the exact value of ∫202xe2xdx
Steps of Solution
Given:
∫2xe2xdx
Using integration by parts where u=x and dv=e2xdx:
du=dx
v=e2x2
So:
∫2xe2xdx=2(x⋅e2x2–∫e2x2dx)
=xe2x–∫e2xdx
=xe2x–e2x2+C
Evaluating from 0 to 2:
[xe2x–e2x2]20
=(2e4–e42)–(0–e02)
=2e4–e42+12
=4e42–e42+12
=3e42+12
=3e4+12
Explanation of the Steps
To find the exact value of the integral ∫202xe2xdx, we use the method of integration by parts. Let:
u=xanddv=2e2xdx
Then:
du=dxandv=∫2e2xdx=e2x
Using the integration by parts formula ∫udv=uv–∫vdu, we get:
∫2xe2xdx=2(x⋅e2x–∫e2xdx)
Solving the integral ∫e2xdx:
∫e2xdx=e2x2
So:
=2(x⋅e2x–e2x2)
=2xe2x–e2x+C
Evaluating the definite integral from 0 to 2:
[2xe2x–e2x]20
=(2(2)e2(2)–e2(2))–(2(0)e2(0)–e2(0))
=(4e4–e4)–(0–1)
=3e4+1
Thus, the exact value of the integral is:
3e4+1